동기지금까지 text-to-image 생성 모델인 여러 Latent Diffusion Model을 파인튜닝 해왔는데, 이미지 생성 모델에 대한 논문을 다시 정독하다가 CFG에 대한 부분을 전혀 고려하지 않고 있었다는 것을 깨달았다. 그래서 이걸 고려해서 새로운 기법을 적용하여 파인튜닝 해 본 결과 꽤 재미있는 결과가 나와서 글을 쓰게 되었다. Text Conditioning의 중요성text-to-image 생성 모델에서는 text conditioning이 매우 중요한 역할을 한다. 자신이 원하는 이미지를 출력하기 위해서는 입력한 프롬프트를 이해하고 정확하게 Sampling을 해야 하기 때문이다.Stable Diffusion 에서는 샘플링 과정에서 text condition이 적용된 샘플의 퀄리티를 높이..
지금까지 여러 Latent Diffusion 모델을 드림부스로 특정 대상에 대한 개념을 파인튜닝 해보면서 어떤 설정이나 데이터셋에 따라서 결과에 차이가 발생한다는 것을 알게되었지만, 어느정도의 유의미한 차이가 있는지 판단에 어려움이 있었다. 그래서 나는 생성모델을 수학적으로 평가하는 방법들에 대하여 알아보았다. 평가요소우선, Latent Diffusion 모델과 같은 이미지 생성모델을 평가하려면 어떤 요소들을 고려해야 할지 알아보자Fidelity (충실도) : 이미지의 질 (실제와 얼마나 유사한가?)Diversity(다양성) : 이미지의 다양성이렇게 크게 두가지가 있다.생성 모델에서 출력한 이미지의 질은 당연히 중요하고, 생성 모델이 다양한 결과물을 출력할 수 있어야 생성모델이 진정한 생성모델이라고 할..
Stable Diffusion에 대한 인기가 높아지면서 모델의 파인 튜닝에 대한 관심도 같이 높아지고 있다. 그런데 여기서 간편한 모델 파인 튜닝 방법 중 하나인 Dreambooth(드림부스)라는 것이 주목 받고 있다. 이 글에서는Dreambooth 논문을 요약하고, 어떻게 쓰는 것이 효율적인지에 대하여 연구한 내용을 다룰 것이다. 이 글을 읽기 전에 Stable diffusion에 대한 글을 먼저 읽는것을 추천한다. Fine-tuning 이란? 먼저, Dreambooth가 하는 일인 Fine-tuning이 뭔지부터 설명해보겠다. Fine-tuning은 기존에 학습된 모델(pretrained model)을 기반으로 추가적으로 새로운 데이터셋을 학습하는 것을 통해 모델의 파라미터를 미세조정하는 것이다. F..